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ABSTRACT
A novel generative colour texture model based on multi-
variate Bernoulli mixtures is proposed. A measured mul-
tispectral texture is spectrally factorised and multivariate
Bernoulli mixtures are further learned from single bit planes
of the orthogonal monospectral components and used to
synthesise and enlarge these monospectral binary factor
components. Texture synthesis is based on easy computa-
tion of arbitrary conditional distributions from the model.
Finally single synthesised monospectral texture bit planes
are transformed into the required synthetic multispectral
texture. This model can easily serve not only for texture
enlargement but also for segmentation, restoration, and re-
trieval or to model single factors in complex Bidirectional
Texture Function (BTF) space models. The strengths and
weaknesses of the presented Bernoulli mixture based ap-
proach are demonstrated on several colour texture exam-
ples.

Index Terms–Texture modeling, Bernoulli mixture, EM
algorithm

1. INTRODUCTION

Generative texture models are useful not only for mod-
elling physically correct virtual objects material surfaces
in virtual or augmented reality environments or restor-
ing images but also for contextual recognition applications
such as segmentation, classification or image retrieval.

Texture synthesis approaches may be divided primar-
ily into sampling and model-based methods. Sampling
methods [1, 2, 3, 4, 5, 6] rely on sophisticated sampling
from real texture measurements while the model-based
techniques [7, 8, 9, 10, 11, 12] describe texture data us-
ing multidimensional mathematical models and their syn-
thesis is based on the estimated model parameters only.
There are several texture modelling approaches published
and some survey articles are also available [8]. Most pub-
lished texture models are restricted only to monospectral
textures for few models developed for multispectral (mostly
colour) textures refer [7, 9, 10]. We introduced in our pre-
vious papers [9, 10] fast multiresolution Markov random
field (MRF) based models, which are very efficient for
colour or even for substantially more complex BTF [13]
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texture modelling, because they do not suffer with some
problems of alternative options (see [8] for details) and
simultaneously they are easy to analyze as well as to syn-
thesise. However they cannot model well regular or near-
regular textures.

The present paper targets such textures using a multi-
variate Bernoulli mixtures (BM) texture model with com-
ponents defined as products of univariate Bernoulli dis-
tributions. The multivariate Bernoulli mixtures are used
to model the local statistical texture properties separately
for individual bit planes of decorrelated monospectral im-
age components. In the application part we demonstrate
advantages and weak points of the proposed method on
several colour textured images.

2. BERNOULLI DISTRIBUTION MIXTURE
MODEL

General static multispectral (e.g. colour) texture requires
a three-dimensional model (for some fixed illumination
and viewing angles). The spectral factorisation alternative
(using PCA decorrelation) accepted in this paper allows
using simpler 2D data models with much less parameters
at the cost of mostly negligible loss of spectral image in-
formation. A digitised texture image Y is assumed to
be defined on a finite rectangular N ×M × d lattice I ,
r = {r1, r2, r3} ∈ I denotes a pixel multiindex with the
row, columns and spectral indices, respectively. The nota-
tion • has the meaning of all possible values of the corre-
sponding index. Supposing now uncorrelated monospec-
tral textures after the PCA decorrelation step of our al-
gorithm, we assume that each pixel of the image is de-
scribed by K possible grey level values, where K is the
set of distinguished grey levels and B = {0, 1}. Sin-
gle monospectral images are further factorised into sep-
arate binary bit planes (8 for |K| = 256) of binary vari-
ables ξ ∈ B which are modelled separately. These binary
plane Bernoulli mixture models can be reliably learned
from much smaller training texture than the full gray scale
discrete mixture models. To simplify notation we will
neglect further on the spectral component in the multi-
indices r, s because single submodels describe only single
bit planes from decorrelated mono-spectral components of
the original multi-spectral texture.

Let us suppose that a bit plane of a mospectral tex-
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tured image component represents a realisation of a ran-
dom vector with a probability distribution P (Y•,•) and
that the properties of the texture can be fully characterised
by a marginal probability distribution of binary levels on
pixels within the scope of a window centred around the lo-
cation r and specified by the rectangular index set Ir ⊂ I .
If we denote Y{r} the corresponding subvector of Y•,•
Y{r} = [Ys ∀s ∈ Ir], Y{r} ∈ Bη , η = card{Ir}
and P (Y{r}) the corresponding marginal distribution of
P (Y ) then the marginal probability distribution on the
“generating” window Ir is assumed to be invariant with
respect to arbitrary shifting within the original image. Thus,
e.g., for a rectangular window of size η = 20× 20 pixels
we have to estimate a 400-dimensional probability distri-
bution P (Y{r}). The distribution P (Y{r}) is assumed to
be multivariable Bernoulli mixture in the form:

P (Y{r}) =
∑
m∈M

p(m)P (Y{r} |m) (1)

Y{r} ∈ 2η M = {1, 2, . . . ,M} where p(m) are prob-
ability weights and the component distributions P (· |m)
are multivariable Bernoulli

P (Y{r}) =
∑
m∈M

p(m)
∏
s∈Ir

ps(Ys |m) , (2)

ps(Ys |m) = θYs
m,s(1− θm,s)1−Ys , Ys ∈ B are univari-

ate Bernoulli distributions. The parameters of the mixture
model (2) are probabilistic component weights p(m) and
the univariate discrete distributions of binary levels simply
defined by a vector of probabilities:

ps(· |m) = (θm,s, 1− θm,s) . (3)

The total number of mixture (2) parameters is thus M(1+
2η) - confined to the appropriate norming conditions. Note
that the form of the univariate discrete distributions (3) is
fully general without any constraint. The strong motiva-
tion for the multivariable Bernoulli model (2) is a simple
switch-over to any marginal distribution by deleting su-
perfluous terms in the products P (Y{r} |m).

3. EM ALGORITHM

The underlying structural model of conditional indepen-
dence is identified from a data set S obtained by step-
wise shifting the contextual window Ir within the origi-
nal texture image, i.e., for each location r one realization
of Y{r}.

S = {Y{r} ∀r ∈ I, Ir ⊂ I} Y{r} ∈ Bη . (4)

The unknown parameters of the approximating mixture
can be estimated by means of the iterative EM algorithm
[14], [15]. In order to estimate the unknown distributions
pn(· |m) and the component weights p(m) we maximize
the likelihood function corresponding to (4)

L =
1
|S|

∑
Y{r}∈S

log [
∑
m∈M

P (Y{r} |m) p(m)] (5)

Fig. 1. Natural (left) and synthetic BM (middle) car-
pet (upper) and jute (bottom) textures compared with
their synthetic (right) alternatives generated using Gaus-
sian MRF models.

by means of the EM algorithm. The related iteration equa-
tions can be expressed as follows:

q(t)(m| Y{r}) =
P (t)(Y{r} |m) p(t)(m)∑
j∈M P (t)(Y{r} | j) p(t)(j)

, (6)

p(t+1)(m) =
1
|S|

∑
Y{r}∈S

q(t)(m | Y{r}), (7)

p(t+1)
n (ξ |m) =

1
|S|p(t+1)(m)

(8)∑
Y{r}∈S

δ(ξ, Yn) q(t)(m |Y{r}), ξ ∈ B.

The mixture parameters are initialised by random num-
bers. The iteration process is stopped when the criterion
increments are sufficiently small. The iteration scheme (6)
– (8) has the monotonic property: L(t+1) ≥ L(t), t =
0, 1, 2, . . . which implies the convergence of the sequence
{L(t)}∞0 to a stationary point of EM algorithm (local ex-
treme or a saddle point of L). However, the ML estimates
may be negatively influenced by the fact that the observa-
tions in S are not independent.

4. TEXTURE SYNTHESIS

Let Ir be a fixed position of the generating window. If
Y{ρ} ⊂ Y{r} is a subvector of all pixels previously spec-
ified within this window and ρ ⊂ Ir the correspond-
ing index subset, then the statistical properties of the re-
maining unspecified variables are fully described by the
corresponding conditional distribution. In view of the ad-
vantageous properties of our mixture model we can easily
compute any univariate conditional distribution pn | ρ:

pn | ρ(Yn |Y{ρ}) =
M∑
m=1

Wm(Y{ρ})pn(Yn |m) , (9)
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where Wm(Y{{ρ}) are the a posteriori component weights
corresponding to the given subvector Y{ρ}:

Wm(Y{ρ}) =
p(m)Pρ(Y{ρ} |m)∑M
j=1 p(j)Pρ(Y{ρ} | j)

, (10)

Pρ(Y{ρ} |m) =
∏
n∈ρ

pn(Yn |m) .

The binary level yn can be randomly generated by means
of the conditional distribution pn|C(yn|Y{ρ}) whereby Eqs.
(9) can be applied to all the unspecified variables n =
η− card{ρ} given a fixed position of the generating field.
The starting pixel (e.g., left upper corner) is generated
from the corresponding unconditional marginal. Simulta-
neously, each newly generated binary level yn can be used
to upgrade the conditional weightsWm(Y{ρ}). In the next
step, the generating field is shifted to a new position and
the conditional distribution (9) has to be computed for a
new subset of the specified pixels in ρ. In our experiments
we have used a regular left-to-right and top-to-down shift-
ing of the generating window. Specific mixture models (1)
synthesise single bit planes of the decorrelated monospec-
tral components. The resulting synthesised colour (multi-
spectral) texture is obtained from combining correspond-
ing bit planes into three (several for multispectral) synthe-
sised monospectral images and inverting the decorrelation
process.

Fig. 2. Natural and synthetic (right) textile textures.

5. EXPERIMENTAL RESULTS

The implementation of EM algorithm is simple but there
are some well known computational problems, e.g., the
proper choice of the number of components, the existence
of local maxima of the likelihood function an the related
problem of a proper choice of the initial parameter val-
ues. The above difficulties are less relevant if the sample
size is sufficiently large. In our case the dimension of the
estimated distribution is not too high (N ≈ 101 − 102)
and the number of the training data vectors relatively large
(|S| ≈ 104 − 105). The number of grey levels to be dis-
tinguished is |K| = 256 and therefore the estimated dis-
tribution becomes considerably complex. For these rea-
sons the generating window should always be kept rea-
sonably small and the sample size as large as possible. All
BM models used the contextual window size 21× 21 pix-
els, M = 40 components and about 10 iterations of EM
algorithm. The computation was rather time-consuming
it took several hours in total on standard PC computer.
The time needed for texture synthesis is comparable with
one iteration step of the EM algorithm. The examples

Fig. 3. Synthetic gingham texture mapped on a snail shell
model.

Figs. 1,2,3 illustrate properties of our BM model on natu-
ral colour textures. The carpet texture on Fig. 1 or ging-
ham texture on Fig. 3 represent relatively regular texture
which is notoriously difficult for some alternative texture
models like for example Gaussian Markov random field
models (Fig. 1 - top right) but the presented model pro-
duced very good synthesis result (Fig. 1 - top middle).
Similarly the jute example (Fig. 1 - bottom) or the buck-
ram texture (Fig. 2 - top) demonstrate very good perfor-
mance of the presented model.

Similarly as all other known texture models also our
BM model has its strong as well as weak sides. While
the presented model can realistically synthesise natural or
man-made textures with strong periodicity, which are no-
toriously difficult for most of alternative approaches, its
major weakness is lesser robustness than the Markovian
models family. A BM model has strong tendency either
to produce high quality synthetic texture or to completely
fail with resulting noise field. Markovian models in these
cases demonstrate clear effort to grasp at lest some of the
difficult texture features. The computationally most ef-
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ficient Markovian models are much faster than the pre-
sented model, but general Markovian models which re-
quire Markov chain Monte Carlo methods for their analy-
sis as well as synthesis are comparable.

6. CONCLUSION

The application of EM algorithm to colour texture mod-
elling has some specific features. Generally the dimen-
sion of the sample space is relatively high and the cor-
responding sample size appears to be sometimes insuffi-
cient. Moreover, the data vectors obtained by shifting the
window are not independent as it is assumed in the like-
lihood criterion. For these and other reasons the estima-
tion of the texture model in the form of set of multivariate
Bernoulli mixtures is a difficult task. Our extensive BM
models simulations suggest that often the model requires
a relatively large training data set and powerful computing
resources to successfully reproduce any given natural tex-
ture. While the computational complexity is going to be
less important in near future and on top of that this model
is ideal for parallelization, the requirement for large learn-
ing data set is more difficult to overcome and can be re-
strictive in some texture modelling applications.
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[9] M. Haindl and V. Havlı́ček, “Multiresolution colour
texture synthesis,” in Proceedings of the 7th Interna-
tional Workshop on Robotics in Alpe-Adria-Danube
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[13] Michal Haindl and Jiřı́ Filip, “Extreme compres-
sion and modeling of bidirectional texture function,”
IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 29, no. 10, pp. 1859–1865, 2007.

[14] A.P. Dempster, N.M. Laird, and D.B. Rubin, “Max-
imum likelihood from incomplete data via the em
algorithm,” Journal of the Royal Statistical Society,
B, vol. 39, no. 1, pp. 1–38, 1977.

[15] J. Grim, “On numerical evaluation of maximum like-
lihood estimates for finite mixtures of distributions,”
Kybernetika, vol. 18, pp. 173–190, 1982.

581




